If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+20X=460
We move all terms to the left:
X^2+20X-(460)=0
a = 1; b = 20; c = -460;
Δ = b2-4ac
Δ = 202-4·1·(-460)
Δ = 2240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2240}=\sqrt{64*35}=\sqrt{64}*\sqrt{35}=8\sqrt{35}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{35}}{2*1}=\frac{-20-8\sqrt{35}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{35}}{2*1}=\frac{-20+8\sqrt{35}}{2} $
| 70+65(x-1)=525 | | 2(l+1/3l+2)=44 | | 2(x+1/3x+2)=44 | | -0.10(80)+0.65x=0.05(x-16) | | 6c2-5c-21=0 | | -2(2x+3x)=-3(2-3x) | | -0.10(26)+0.65x=0.05(x-4) | | 0.11y+0.02(y+3000)=1100 | | 6x/25+0.21=0.306 | | 6/25x+0.21=0.33 | | 6x/25+0.21=0.33 | | 5=(2/3)(2)+b | | X-0,04x^2+3=0 | | X+20÷x=9 | | X+20/x=8 | | 3x+11-x=5x-23 | | z6−2z3+2=0 | | 24=-16t^2+24 | | x=110+80+50 | | (-9)x-(-120)=3 | | 7/(2x+21)=1 | | 80+65(x-1)=665 | | 7/(2x+21)=90 | | 7/(2x+21)=0 | | -5x^2=1+7x | | 8x+9x-3x+7+3=-7(-3x+2) | | 4,5=0,15*x | | 95(75)-2705=y | | 2x=+4=24 | | X-0,04x^2=0 | | (3x-1)+Y=310 | | 10-3x=1.15 |